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Abstract— Obstetric ultrasound assessment of fetal
anatomy in the first trimester of pregnancy is one of the
less explored fields in obstetric sonography because of the
paucity of guidelines on anatomical screening and availabil-
ity of data. This paper, for the first time, examines imag-
ing proficiency and practices of first trimester ultrasound
scanning through analysis of full-length ultrasound video
scans. Findings from this study provide insights to inform
the development of more effective user-machine interfaces,
of targeted assistive technologies, as well as improve-
ments in workflow protocols for first trimester scanning.
Specifically, this paper presents an automated framework
to model operator clinical workflow from full-length rou-
tine first-trimester fetal ultrasound scan videos. The 2D+t
convolutional neural network-based architecture proposed
for video annotation incorporates transfer learning and
spatio-temporal (2D+t) modelling to automatically partition
an ultrasound video into semantically meaningful temporal
segments based on the fetal anatomy detected in the video.
The model results in a cross-validation A1 accuracy of
96.10%, F1 = 0.95, precision = 0.94 and recall = 0.95.
Automated semantic partitioning of unlabelled video scans
(n=250) achieves a high correlation with expert annotations
(ρ = 0.95, p = 0.06). Clinical workflow patterns, operator
skill and its variability can be derived from the resulting
representation using the detected anatomy labels, order,
and distribution. It is shown that nuchal translucency (NT) is
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the toughest standard plane to acquire and most operators
struggle to localize high-quality frames. Furthermore, it is
found that newly qualified operators spend 25.56% more
time on key biometry tasks than experienced operators.

Index Terms— First trimester, ultrasound, spatio-
temporal analysis, video classification, clinical workflow.

I. INTRODUCTION

THE first trimester fetal ultrasound (US) scan is an essen-
tial part of obstetric care, offered to pregnant women to

establish fetal viability, pregnancy dating by measurement of
the fetal crown-rump length (CRL) and estimating the likeli-
hood of chromosomal abnormalities through measurement of
the fetal nuchal trasnlucency (NT). The UK Fetal Anomaly
Screening Programme (FASP) [1], [2] clinical protocol for the
first trimester scan defines these key tasks and measurements,
carried out between 11+2 and 14+1 weeks+days of gestation.
In recent years, first trimester scans are also increasingly car-
ried out to detect fetal structural anomalies [3]. Detection rates
of anomalies (structural and chromosomal) in first trimester
ultrasound scans ranges from 32% in low-risk pregnancies to
60% in high-risk pregnancies [4], and recent data also suggest
that cardiac defects can be detected at this early stage [5].

Currently, there is no universally accepted standard work-
flow protocol for the first trimester anatomical screening [4].
The task order for a first trimester scan depends on fetal
position, fetal movement, and sonographer preferences. Impor-
tantly, sonographer skill and experience play a critical role in
first trimester scan acquisition [6]. In addition, structures can
be captured in various acquisition planes (axial, coronal and
sagittal) using different ultrasound modes (2D, Doppler, and
3D) and methods (Transabdominal and Tranvaginal). Hence,
it is challenging to automatically interpret and analyze first
trimester ultrasound scans due to wide variance in scanning
preferences and varied workflows. This study aimed to develop
an original spatio-temporal deep learning (DL) architecture
trained to provide semantic labels for the first trimester US
video. To demonstrate clinical applicability, the trained model
is used to semantically partition unlabelled full-length first-
trimester US video scans and investigate the clinical workflow.
This provides insight into real-world clinical imaging work-
flow which has not be shown before.
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The contributions of the paper are two-fold.

1) To automate video annotation: A spatio-temporal deep
learning architecture is trained using pre-trained weights
from a second trimester video annotation task model to
provide semantic labels for a first trimester US video
annotation task model. We experimented with various
deep neural networks to determine the best performing
model for the annotation task. We also investigated the
effect of introducing spatio-temporal knowledge during
training. The model with the highest performance was
assessed for similarity with expert-labelled video scans.
The best performing trained model was subsequently
applied to annotate the entire dataset of full-length first
trimester US videos.

2) To further our understanding of clinical sonography: For
the clinical workflow analysis, a complete anatomical
timeline model was built upon partitioned first trimester
US scans to investigate the differences and similari-
ties among different scans and sonographer scanning
patterns.

The outline of the paper is as follows. Firstly, in Section II,
we summarize the related literature on ultrasound video
analysis and first trimester US image analysis. Section III
outlines the US data acquisition protocol, pre-processing and
proposed deep learning model for automated full-length video
scan annotation. Automated video annotation is evaluated in
Section IV. In section V-A we analyze the annotated video
datasets using a subject-specific timeline model to summarize
clinical and operator workflow timelines. In section V-C.2 we
present the results and discussion.

II. RELATED WORK

Convolutional Neural Networks (CNNs) have proven to
provide a powerful foundation for automated video analysis,
by combining the space and time dimensions of an input and
performing convolutions in both dimensions [7]. In computer
vision, video classification and activity recognition has been
extensively studied on several public benchmarks and is an
active area of computer vision research [8], [9].

In medical image analysis, a number of studies have
explored video classification and analysis methods for
second-trimester fetal ultrasound anomaly scan [10]. These
include image-based segmentation [11], [12], [13], [14],
frame classification [15], [16], fetal biometry [17], [18] and
tracking [19]. Several recent studies have explored obstetric
ultrasound standard plane detection [20], [21], [22], [23], auto-
mated biometry [13], [18], [24], [25], activity captioning [26],
[27], [28] and visual attention modelling [20]. Regarding clin-
ical ultrasound workflow analysis, there are a few early studies
that have explored and analyzed clinical workflows using
machine learning and data science approaches. Blum et al.
[29] used Hidden Markov Models (HMM) to generate and
visualize surgical workflows for laparoscopic cholecystec-
tomy. Franke et al. [30] proposed an effective strategy for
surgical workflow management of lumbar discectomies and
brain tumor removals. The proposed approach predicts the
remaining intervention time based on a layered model structure

of low-level surgical tasks. Holden et al. [31] used Markov
models and SVM to automatically segment workflows for
tracked needle interventions collected from ultrasound-guided
epidural injections and lumbar punctures. In recent years,
deep learning has become one of the standard norms for
the analysis of surgical workflows [32]. Twinanda et al. [33]
explored the use of deep learning for the recognition of
surgical workflows in laparoscopic videos. Wang et al. [34],
[35] investigated the clinical ultrasound operators’ skills using
deep learning methods. This study explored the motion of
the probe for the purpose of automatic skill assessment for
second-trimester fetal ultrasound Sharma et al. [36], [37]
recently proposed a spatio-temporal CNN model for second
trimester US partitioning and description which is the work
most closely related to this paper. Our paper extends that
work by considering a different trimester (and associated
differences in fetal appearance and clinical tasks), but also the
video annotation method is different (spatio-temporal CNN
and use of transfer learning from a second-trimester pre-
trained model).

In contrast, only a few first trimester US image analysis
studies have been undertaken with a different focus: auto-
mated CRL and NT measurements [38], assessment of the
maternal placenta [39], classification of fetal brain images [40]
and fetal echocardiography [41]. As exemplars of the state
of art, Mathewlynn et al. [42] proposed a fully automated
placental volume and vascularity measurements method. The
proposed DL-based method presented a standardized ultra-
sound assessment method for 3D volumetric ultrasound.
Qi et al. [43] considered automatic localization of placental
structural abnormalities to assess placental health. Sobhaninia
et al. [44] proposed a multi-task CNN for automatic segmen-
tation and estimation of the head circumference (HC) using
2D ultrasound images. However, no previous publications
have considered automated clinical workflow analysis of first
trimester ultrasound video. This paper presents a novel, fully-
automatic framework to analyse operator clinical workflow
from full-length routine first-trimester fetal ultrasound scan
videos. In this framework a new DL architecture, which
considers spatio-temporal information and transfer learning,
is designed to temporally partition ultrasound videos into
semantic partitions. Automatic semantic partitioning is the
process of segmenting ultrasound videos into semantically
meaningful temporal segments. The semantics in our case
refer to describing which anatomy is being scanned. The
information extracted from labelled scans is employed for
large-scale clinical workflow analysis, including knowledge
representation, operator clinical workflow analysis, operator
skill characterization and variability analysis.

III. METHOD

A. Dataset Description

Routine clinical first trimester fetal US scans were recorded
as part of the large-scale single site clinical ultrasound study
called PULSE [45]. The study was approved by the UK
Research Ethics Committee (Reference 18/WS/0051). Scans
were performed at the Oxford University Hospitals NHS
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TABLE I
DEMOGRAPHIC INFORMATION OF THE PULSE FIRST TRIMESTER DATA

Fig. 1. Illustration of expert annotation process: video frames were
annotated as Frozen video segments (blue), measurements (technical
annotation) segment (red) and fine-tune segment (yellow). We used the
measurements segment (red) for the extraction of the training dataset’
technical annotations.

Foundation Trust. The demographic information of the PULSE
first trimester data is given in Table I. The video was
acquired by different operators using a commercial Voluson
E8 version BT18 (General Electric Healthcare, Zipf, Austria)
ultrasound machine. The PULSE protocol proposed the use
of two US machines (Voluson E8 and Voluson E10). How-
ever, the Voluson E10 has not used for data collection of
first-trimester US scans. The sonographers used an LCD
monitor with 1920 × 1080 pixels resolution and a refresh
rate of 60 Hz. US videos were recorded at 30 frames per
second (fps). On average, a recorded first-trimester US video
scan takes 15.7 ± 4.2 minutes, with an average of 28, 237 ±
7, 534 frames per video scan. A dataset of 250 full-length
videos (3900 minutes) was acquired from an equal number
of pregnant women. We have excluded irrelevant information
from the recorded videos and the final 2600 minutes of data
that was used to assess the workflow. For a more detailed
description of the full PULSE acquisition protocol the reader
is referred to [45].

B. Dataset Annotation

We undertook expert frame-level annotations of fetal
anatomy in 95 of the 250 subjects to create a subset of
annotated first-trimester video segments. As we had recorded
video of the US machine display, all workflow actions were
also recorded. As illustrated in Figure 1, a sonographer will
scan to identify an anatomy of interest, refine scanning as
they approach a standard view, freeze a frame and carry out
measurements on the ultrasound video that has been buffered
in the machine. A sonographer will then unfreeze the frame
and start searching for the next anatomical structure of interest.
If a satisfactory standard plane is not seen, the search-freeze-
measure procedure is usually repeated. In practice, due to fre-
quent fetal movement and small fetal size in the first trimester,

Fig. 2. a. Labelled frozen video segments in a typical sample full-length
video US scan. b. Number of expert-annotated short video segments
available for each of 9 operators.

a sonographer may re-visit the same anatomy multiple times
in a scan to acquire the best possible view in order to increase
the accuracy of anatomical assessment and measurement [46].

The sonographer performs the following actions on the
buffered video:

• Diagnostic inspection (including, head, heart, abdomen,
optionally other).

• Biometric measurements (NT, CRL, and other anatomical
areas such as abdominal or head circumference).

• Doppler or pulse-Doppler based measurements (e.g.,
heart, maternal uterine artery).

• 3D-mode surface rendering of the entire fetus, fetal face
or other anatomy.

A freeze frame (FF) video segment is recorded when a sono-
grapher is satisfied that it is a standard plane. In the continuous
recording of the full scan there are significant portions of
video unrelated to a fetal standard plane, which in this paper
we term “search-time”. This is time spent in the searching
and refining process (fine-tuning), where a sonographer aims
to capture a high-quality view of the relevant fetal anatomy.
We added fine-tuning frames to each FF segment (pre-frozen
state) to ensure a wide variety of feature maps (Figure 1).
We are aiming to train and test the algorithm using a full FF
segment as well as pre-frozen video (90 frames) to ensure
that it will achieve similar performance on non-FF segments
as well. A complete first-trimester video scan can be divided
into different FF categories; CRL, NT, Brain, Heart and
Abdomen, which contains fetal biometry measurements and
standard plane analysis. FF segments from 95 full-length first
trimester scans of different subjects were identified by optical
character recognition (OCR) and extracted. The average length
of each FF segment is 31.8 seconds. We used frames from
these sonographers-annotated FFs to build the training and
testing dataset (Figure 2) that was used to train the CNNs
(section III-E). For spatial-only CNN training, the acquired
video was sampled every eighth frame to incorporate a
range of anatomical views and spatial diversity for concurrent
frames. Figure 3 summarizes the complete dataset used for
training, validation, and testing.

There are seven key anatomical categories [“classes”]
(“class distribution”): ‘Crown Rump Length’ [CRL] (48.16%),
‘Nuchal Translucency’ [NT] (15.51%), ‘Biparietal diame-
ter’ [BPD] (7.36%), ‘Heart’ [Hr] (1.63%), ‘Abdomen’ [Ab]
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Fig. 3. Details of dataset used in this study. 95 unique US videos were
acquired from 95 subjects.

Fig. 4. First-Trimester Fetal Anatomy: A.a Crown Rump Length (CRL),
B.b Nuchal Translucency (NT), C.c Brain (BPD), D.d Abdomen (Cord
insertion, Ab), E.e Heart (Hr), F.f 3D mode.

(7.07%), and ‘3D-mode’ (4.19%) and ’Other’ [Bk] (16.08%)
(Figure 4). 3D-mode is not an anatomical structure however it
is an important part of the overall scanning process. Therefore,
we wanted to track and evaluate the amount of time spent
on scanning in 3D mode. The ‘Bk’ class includes minority
classes (e.g. placenta, etc.). The dataset is divided into the
training (77.1%, 73 subjects), validation (17.4%, 16 subjects)
and testing sets (5.5%, 6 subjects).

C. Video Annotation Model

We propose a two-stream CNN architecture, which we call
‘PULSE-v’, for fetal anatomy annotation in full-length routine
first-trimester US scan videos. The proposed network architec-
ture design shown in Figure 5 uses a spatial (2D) supervised
transfer learning branch and a spatio-temporal (2D+t) branch.
The principal design idea for the two branch architecture was
to fuse the prior knowledge learned from a second-trimester
US feature representation with the spatio-temporal features of
a first-trimester representation. To overcome the requirements
of large-scale labelled video datasets, we considered transfer

learning model fusion with standard plane learning features.
Specifically, we investigated using pre-trained weights from a
second-trimester model to improve training performance.

1) Spatial Modelling: For 2D spatial modelling, we trained
and compared a number of CNN architectures. As base-
lines we used VGG-16, VGG-19 [47], and ResNet-18,
ResNet-50 [48] architectures due to their established high
benchmark classification performance on public computer
vision datasets [49]. We also implemented variants of cus-
tomized VGG-based models specifically tuned for US images
which we refer to as PULSE (architectural configuration
shown in Figure 5). We implemented two different con-
figurations of a PULSE model; a PULSE model trained
with randomly initialized weights called PULSE(RI); and a
PULSE model fine-tuned on second-trimester data weights
named PULSE2D(PT). The weights of PULSE2D(PT) were
achieved using a VGG16-based network architecture trained
to perform a second-trimester standard plane detection task on
534 second-trimester US scans for 13 standard plane classes:
four views of heart, three-vessel and trachea, four-chamber,
right ventricular outflow tract, and left ventricular outflow
tract, two views of brain, transventricular and transcerebellum,
two views of spine, coronal and sagittal, abdomen, kidneys,
femur, lips, profile, and the background class.

2) Spatio-Temporal (2D+t) Modelling: The primary motiva-
tion behind designing and implementing a spatio-temporal
deep learning method is to utilise the richer spatio-temporal
(2D+t) information contained in US video rather than just
the 2D standard planes. We consider different approaches to
incorporate temporal information and build a spatio-temporal
architecture. PULSE spatial CNN was used as a backbone
architecture to extract 1D or 2D features from consecutive
frames. These features are fed to temporal dependency models:
an RNN (PULSE-lstm), a 2D+t CNN (PULSE2Dt) and a
multi-stream model (PULSE-v). PULSE-lstm employs long-
short-term memory (LSTM) to incorporate temporal infor-
mation. PULSE2Dt uses 3D convolution kernels for training
a 2D+t architecture. For learning temporal dependencies,
PULSE-v combines a 2D and a 2D+t branch with a feature
fusion unit.

3) Feature Fusion: The fusion of spatio-temporal features
is a main challenge in training such models. In order to
accomplish our objective, we combined representations con-
structed from spatial layers (of PULSE2D(PT)) initialized
by weights from a large-scale second-trimester dataset and
spatio-temporal layers (PULSE2Dt) that were randomly ini-
tialized to be trained on the acquired dataset. We investigated
the late fusion methodology for the proposed multi-stream
framework. The fusion model was composed of a concatenate
layer followed by two fully-connected layers in order to reduce
the dimensionality of features. Finally, a softmax layer was
applied for the final prediction.

D. Automated Clinical Workflow Analysis

We follow the analysis approach suggested in [37] to gain
understanding of first trimester clinical workflow from the
large-scale annotated video dataset.
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Fig. 5. PULSE-v Model: A spatial-temporal deep learning model with two branches. The 2D (spatial) branch takes a video frame (sampled every
8 frames) and trains using pre-trained weights. The spatial-temporal (2D + t) branch uses a continuous video frames stream (sequence size = 8).
The two branches merge at the feature fusion unit to finely classify first-trimester fetal anatomy.

Specifically we compute:
• Subject-specific timeline models: A subject-specific time-

line model partitions a full-length US scan into specific
scanning events. Each scanning event is dedicated to
particular fetal anatomy. The key objective of this analysis
is to measure the time spent on each scanning event to
determine the accumulative time spent for each anatom-
ical structure by a specific operator.

• Task frequency: We use the Apriori algorithm [50] to
extract the most frequent anatomical tasks during an US
scan. This enables prediction of the most commonly
scanned workflows. A Hidden Markov model (HMM)
was used to predict the probability of anatomical states
and from this we can determine the most frequently
visited anatomical structures by a specific operator.
A HMM makes use of latent variables in order to deal
with uncertainty and sequential phenomena, making it
suitable for addressing a wide variety of biomedical
problems [51], [52].

These techniques allow us to describe clinical scanning pat-
terns and preferences for different operators. That can be used
to determine skill differences between Experienced (EX) and
Newly Qualified (NQ) operators. These representations can
also be used to assess the variance between different operators
scanning practices as we show later.

E. Implementation Details
The networks were trained to classify video segments

into the 7 classes: CRL, NT, BPD, Hr, Ab, 3D-mode and
Bk classes. The CNN architectures were implemented using
PyTorch v1.8.0. US video frames were scaled to 224 × 224
pixels. Video frames were extracted and pre-processed to
exclude acquisition details like screen commands. Only the
area of the screen containing the ultrasound video is used
during the training process. Standard data augmentation was

used (rotation [−30◦, 30◦], horizontal flip, Gaussian noise, and
shear (≤ 0.2)). Images were normalised to zero-mean and
unit variance. The batch size was adjusted according to model
size and GPU memory restrictions. We used standard network
training configurations for each benchmark (ResNet [48],
VGG [47]). In PULSE-net based network configurations,
dropout is not used. However, we applied weight decay in
order to increase generalizability. The weight decay was set
to 1e-4. We used the Stochastic Gradient Descent (SGD)
optimizer. All CNN models were trained using a cross-entropy
loss function for 200 epochs, constantly reducing the learning
rate (× 0.1 every 20 epochs).

IV. EXPERIMENTS

A. Comparison of Video Annotation Models

Recall (R), Precision (P), F1-score (F1), and Top-1 accuracy
(A1) were used to assess the performance of the video
annotation models. Referring to the quantitative results in
Table II, PULSE2D(PT) consistently outperforms the other
spatial CNN benchmarks (precision score=0.90). Adding
pre-trained weights to PULSE2D(PT) model gives further
improvement and the best 2D result (F1-score (3.0%) and A1
(2.84%)) compared to the random initialization (PULSE(RI)).
Hence, it was selected as the 2D backbone for the spatial
branch of the proposed spatio-temporal CNN architectures.

Table II suggests that the PULSE2Dt has the highest per-
formance (A1 = 95.89%) in spatio-temporal CNN category.
With the inclusion of temporal modelling, the spatial-temporal
model (PULSE2Dt) performs better (F1-score (5.0%) and A1
(3.84%)) than PULSE2D and also outperforms PULSE-lstm.
It appears that using 2D+t data to feed the network is the most
natural way of representing the spatio-temporal properties of
the US video dataset. Hence, we chose PULSE2Dt as the
spatio-temporal branch for the final selected CNN architecture
(PULSE-v).
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TABLE II
QUANTITATIVE ANALYSIS OF PROPOSED NETWORK

Fig. 6. Confusion matrix for automated semantic annotations vs manual
annotations (a) PULSE2D; (b) PULSE-v.

The two-branch model PULSE-v proved to be the best
performing end-to-end CNN model for every evaluation met-
ric. The PULSE-v cross-validation evaluation metrics on the
test set were P = 0.94 ± 0.05, R = 0.95 ± 0.01, F1 =
0.95 ± 0.03 and A1 = 0.96 ± 0.01. This model translates
the spatio-temporal properties of video clips by directly using
2D and 2D+t convolutional and pooling operations simulta-
neously. The pre-trained weights also boost the performance
of the model relative to the RNN-based PULSE+lstm model.
We attribute the better performance achieved with PULSE-v
due to its ability to learn short-range dynamic features using
near consecutive frames (PULSE2Dt) and long-range dynamic
features from PULSE2D(PT). Another reason for the effi-
ciency of the proposed model is the less complicated design
that combines a fine-tuned spatial stream with randomly
initialised spatio-temporal architecture.

The confusion matrix in Figure 6 depicts the percentage
statistical distribution between manually-labelled US scans
and automatically-labelled (predicted vs. true label) US scans.
Figure 6-b depicts an excellent agreement with manual and
automatic semantic labelling. Note that even classes with few
samples (e.g. heart, abdomen) are correctly labelled with high
accuracy.

As qualitative analysis, Figure 7 presents the t-distributed
stochastic neighbour embedding (t-SNE) visualisation of the
penultimate layer of the PULSE2D, PULSE2Dt and PULSE-v
models. Observe the confusion between the CRL/NT and
Heart/Abdomen classes in Figure 7-a due to their similar

appearance and potential co-existence on a standard plane.
For the spatio-temporal model (Figure7-c), feature refinement
appears to help to classify anatomical classes into the correct
categories. The two-branch model (PULSE-v) with pre-trained
weights and spatio-temporal information is a more intuitive
solution for US video analysis as it utilises a richer context
during training. The automatically-labelled first trimester US
scans were validated against manually-labelled test data set
and revealed a high correlation Pearson’s correlation coeffi-
cient (ρ = 0.95, p = 0.006). These results established the
suitability of the PULSE-v model for the automatic labelling
of the rest of the US first-trimester dataset for workflow
analysis.

V. CLINICAL WORKFLOW ANALYSIS

Clinical workflow analysis can provide a simplified
US-based workflow model for each subject. In this work
a complete US-based workflow is represented as successive
temporal events associated with different numerically-coded
anatomical structures (class labels), labelled through the vali-
dated PULSE-v described earlier in the paper. Statistical tests
relevant to each subject, operator and anatomical structure can
then be performed.

A. Anatomical Timeline Model

The automated semantic annotations have been carried out
through PULSE-v for full-length US video scans of 250 sub-
jects. We have used temporal regularisation [53] to regularise
and smoothen the classification results for each US scan video.
The proposed method smooths the results of the classifier by
taking into account neighbouring frames. This subject-specific
timeline model provides a simplified US scanning workflow
timeline, where each video segment is labelled with particular
fetal anatomy. This representation is called an Anatomical
Timeline Model (ATM) in [37]. An ATM is shown in Figure 8.
The transitions between anatomical structures observed in
Figure 8 are caused by their existence on similar planes, such
as the mid-sagittal view containing NT and CRL. To locate
the best plane during the fine-tuning process, an operator may
switch opportunistically between these views.
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Fig. 7. t-SNE feature visualization of the model penultimate layer of (a) PULSE2D; (b) PULSE2Dt; (c) PULSE-v.

Fig. 8. Anatomical Timeline Model: A sample full length-length US scan
labelled using the PULSE-v model.

1) Anatomical Tasks Duration: The ATMs for the first-
trimester dataset provide a relatively low level of abstraction
by defining a fine-grained representation of US clinical work-
flow in terms of distinguishing successive scanning events.
This semantic anatomical description of a first trimester
ultrasound scan enables assessment of the proportion of
time spent performing different anatomical tasks during the
scan.

Recall that each US video labelled in our study is a
full-length video session acquired through screengrab. This
means that it includes screen time when the operator recorded
and saved personal details of the subject; and times when the
US probe shows no activity during the scanning session which
may happen, for instance, when the sonographer is speaking to
the subject or colleagues. We excluded these non-anatomical
frames from further analysis.

The mean duration of a clinical workflow analysis
was found to be 12.4 minutes (interquartile range (IQR)
9.6-19.5 minutes), of which 5.2 (IQR 4.6-9.8) minutes were
dedicated to CRL measurement, 2.0 (IQR 1.8-2.0) minutes
to NT measurement and 1.5 (IQR 1.9-2.1) minutes to BPD
measurement. This shows that approximately one-third of the
first-trimester scan duration is dedicated to CRL measurement
and the rest to other activities. This finding can be explained
by the fact that the mid-sagittal (or more accurately median)
view of the fetal profile is a key standard plane viewed
during first-trimester US scanning [1], [2]. However, it also
represents the fact that several tasks are performed in this
plane, including measurement of CRL and NT, and assessing
the fetal face, rectangular palate and diencephalon. Figure 9
shows some typical samples of labelled videos, where each

Fig. 9. Anatomical Timeline Model (ATM) for a typical selection of
full-length US video scan showing the percentage of time spent on key
anatomical tasks (CRL, NT, BPD).

video is partitioned into key anatomical tasks carried out
during the first-trimester scan.

2) Operator Specific Tasks Duration: Our selection criteria
included operators with at least 12 full-length video scans.
Accordingly, only six operators were selected to measure
operator-specific tasks duration. These six operators were
divided into two groups based on experience; expert (EX)
and newly qualified (NQ). The NQ operators (O1, O3,
O4, O6) are qualified sonographers with two or less than
two years of experience, and EX (O2 and O5) are opera-
tors with more than two years of experience. The choice
of two years as the threshold is consistent with [37] and
was chosen based on consultation with fetal US specialists
ATP and LD.

Scan duration is often thought of as a good surrogate for
skill (i.e. with higher expertise you perform a task quicker).
Therefore, we assessed the average time spent by EX and
NQ operators on scanning each anatomical structure. The
hypothesis was that, as the group EX are more familiar with
fetal anatomy than the NQ group, the EX group would have
the shorter average scan duration.

The mean duration (interquartile range, IQR) of the EX
group was 11.9 (IQR 8.1-17.2) minutes, and the NQ group
was 14.7 (IQR 10.3-22.1) minutes, supporting the initial
hypothesis. It was also observed that the NQ group took longer
to search for and localize different anatomical structures. For
example, the average time spent searching and localizing
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Fig. 10. Average duration of the key anatomical tasks for EX and NQ groups. This shows that the NQ group spends more time locating NT and
brain planes. Conversely, the EX group spends less time for the overall scan and identifies NT and brain in a lower average time.

the CRL standard plane for EX operators was 6.9 minutes
compared to NQ 9.1 minutes. Another observation is that
the NQ operator group spent almost double the amount of
time searching for and localizing the NT (Figure 10). The
Kruskal-Wallis H test was conducted in order to examine the
validity of the hypothesis that there are considerable differ-
ences between the NT measurement duration of NQ operators
and EX operators. This test results p-value 0.004 that shows a
considerable difference among a given set of populations and
proves the proposed hypothesis true.

B. Operator Workflow Analysis
An Operator Workflow Analysis (OWA) maps the anatom-

ical events to model workflow patterns for an individual or
group of operators [37]. OWA provides a way to visualise
large-scale workflow datasets and, for instance, to extract com-
mon scanning practices that may suggest how to standardize
future first-trimester US protocols. During first-trimester scans,
operators usually scan key anatomical areas involving multiple
revisits to essential anatomies (CRL, NT) to be confident in
accurate measurement. To map the essential anatomical events,
OWAs were designed with six key anatomical classes (NT,
CRL, BPD, Ab, Hr, 3D-mode). The Bk class was omitted.
It is not a unique anatomical task and accounted for 3.78% of
scans. Therefore, excluding the Bk class was not considered
to significantly bias the results.

In an OWA initially clinical workflow events are mapped
to a connected graph to visualise unique pattern of tasks
performed by an operator. We chose a directed relational
graph - an Operator Transition Graph (OTG) - showing each
sonographer’s clinical workflow pattern during the first-
trimester scan. To build an OTG we calculate the task
transition probability matrix, anatomical task-occurrence prob-
abilities, and anatomical task-start probabilities. These three
measures can be calculated from operator-specific ATMs to

build a unique operator scanning profile. Assume that there
are N operators (sonographers), and let n ∈ 1, 2, . . . N .

1) Task Transition Probability: We calculate the task transi-
tion probability (TTP) matrix for each scan to measure the
probability of transitions between different anatomical tasks,
such as x and y are two non-identical tasks x �= y, and
0 for i = j . The TTP matrix Tn(x, y) is stochastic, i.e.∑m

y−1 Tn(x, y) = 1. A typical transition matrix is shown in
Figure 11, illustrating the trend of anatomical scans for O4.
We chose O4 due to the diversity of scanning, as the oper-
ator acquired a detailed first-trimester scan with all possible
anatomical structures.

2) Task Starting Probability: We were interested to see if an
operator always analyses a specific anatomy at the start of a
scan or if the sequence of scanning is opportunistic. To study
this, the anatomical task-start probability was calculated for
each operator and for the overall dataset (all operators) by
computing the relative occurrence of each task at the beginning
of the ATM. The task-start probability for the xth anatom-
ical task is given as Pn(x) such that

∑m
x=1 Pn(x) = 1.

By analysing the relative occurrence probability of each task
in the overall dataset, we selected the three most commonly
scanned anatomical tasks (among participating operators) for
further analysis: CRL, NT, and BPD.

The Apriori algorithm [50] was used to extract the most
frequent starting anatomical tasks; it was also used to obtain
the most frequent anatomical task combinations. The Apriori
is a fitting choice to extract the most frequent anatomi-
cal task-occurrence probability of each operator’ task I =
{i1, i2, . . . , in} and task transition matrix T = {t1, t2, . . . , tm}
named as database of anatomical transactions. Here each
transaction tx in T has a unique transaction-ID with the subset
of item sets in I . The Apriori rule for any two anatomical
activities (X, Y ) stated as X ⇒ Y , where, X is ’Antecedent’
and Y is ’Consequent’ such as X, Y ⊆ I . Table III shows a
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Fig. 11. A visualisation derived from a task transition matrix for operator
O4 US workflow. The chord diagram shows a workflow of activities
between several first-trimester anatomical structures. Each anatomical
structure is represented by a fragment on the outer part of the circular
layout. The arcs drawn between these anatomical structures show
the workflow patterns of operator O4. The thickness of these arcs is
proportional to the frequency of the workflow patterns that O4 follows
during US scanning.

TABLE III
THE APRIORI ALGORITHM USED TO EXTRACT THE MOST FREQUENT

ANATOMICAL WORKFLOWS ADOPTED BY OPERATORS

different combination of operators’ preferences for starting the
first-trimester scan. The task starting probabilities with CRL
anatomical structure is highest, followed by NT. As expected,
it also shows that the anatomical structures close to each other
are scanned in succession (i.e. CRL, NT).

3) Task-Occurrence Probability: We hypothesized that expe-
rienced sonographers have fewer re-visits to key anatomy
to re-measure the CRL or NT. Anatomical task occur-
rence probability can be calculated by calculating the total
relative frequency and duration of each task based on
the corresponding ATM. The task-occurrence probability
for the xth anatomical task is given as On(x) such that∑m

x=1 On(x) = 1.
Based on computing anatomical task-occurrence probability

we found that most operators prefer to view the CRL, the
NT, or the brain as the first anatomical tasks. The analy-
sis also showed that these three tasks had the highest task
occurrence probabilities (96.02%, (Table III)) which is con-
sistent with clinical expectation as the three anatomies are the

most important to assess for any structural and chromosomal
abnormalities.

Our modelling shows that most operators prefer to examine
Hr, Ab and 3D-mode structures in the latter parts of the first
trimester US scan and spend less time looking at them than
the other structures. This can be explained by the fact that
it is optional and not a protocolised requirement that these
anatomical structures are assessed.

4) Operator Transition Graph (OTG): Operator Transition
Graphs (OTG) are directed graphs Dn that represent the
clinical workflow of each operator. It is composed of nodes
(anatomical structures), and edges (a transactional pathway
among anatomical structures), such that all nodes are reach-
able. It also contains self-loops to show the probability of
revisiting each node. The definitions (task transition prob-
ability, task starting probability, task-occurrence probability)
from Section V-B were used to build a database of anatomical
transactions represented as an acyclic flow of activities for
each operator and scan. Transition probabilities between dis-
crete clinical workflow states could be empirically estimated
by the Hidden Markov model (HMM). HMM is a stochastic
process that can be parameterized by creating a mathemat-
ical representation of underlying ultrasound workflows. The
proposed hypothesis is that HMM could predict the most
common probabilistic workflow path from a given set of
operators US workflow scans. To calculate the most probable
path for each sonographer n, all anatomical scanning pathways
Dn are processed as first-order Markov chains. Hence, the
probability of a given path x from node A to node B is given
by P(x),

P(xt+1 = B | xt = A) (1)

Equation 1 describes the probability in the next (time) step
(t +1) that we transit to state B from the current state A. This
exemplary construct helps to constitute a typical first-order
Markov Model where the next state only depends on the
current state. This is the key reason we chose the first-order
Markov Model as it is not dependent on the early stages or
operators’ preferences during the scanning process. From the
definition given in Equation 1, we can define the probability
of any existing path in the OTG Dn as,

P(path) = Pn(i)
∏

x,y∈E
Tn(x, y) (2)

The final most-probable path for a particular sonographer
is calculated from the aforementioned anatomical task-start
probabilities, anatomical task-occurrence probabilities, and
task transition probability matrix in the following way. The
starting node is chosen with the maximum task-start prob-
ability. After task initialization, we determine the remaining
task ordering. It is hypothesized that OTG will provide the
most probable, non-repeating clinical task ordering with the
highest probability score. However, multiple paths may have
the similar highest path probability value. Thus, to select one
of these paths as the most probable path, we calculate the
possible pairs of activities and their occurrence probabilities.
This provides a map of possible pairs of activities that a
particular operator performs in conjunction with. In this way,
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Fig. 12. Operator Transition Graph: The most probable path of
each operator, shows the mental map and preference while perform-
ing the first-trimester US scan. Also showing each node’s anatomical
task-occurrence probability (possible revisit to the same anatomical
structure to acquire the perfect standard plane).

we set the rest of the activities through this conjunction
probability. We use the Apriori algorithm, which builds all
possible combinations and task occurrence probability for
each operator. This method efficiently discovers complete path
sets for each start-node/end-node pair. The path with the
highest path probability Ppath is determined using Equation 2.
Figure 12 shows the most probably paths for five different
operators.

Referring to Figure 12 observe that the EX sonographers
(O2, O5) follow a systematic scanning approach that likely
stems from a mental checklist. It also shows that EX operators
tend to scan from CRL to NT that is shown by edges
from each node tending to have high probability scores in
comparison to the NQ group (O1, O3). The NQ group shows
a more opportunistic approach, where their OTG task transac-
tion probabilities are comparably among different anatomical
structures.

In addition, operator clinical workflow is also subject to the
preferences and priorities of the individual. For example, oper-
ator O4 tends to scan comprehensively, taking into account
all possible anatomical structures. Based on our analysis,
each operator exhibits a particular pattern and signature for
scanning that is repeated in nearly every instance. Based on
these statistics, we propose a general anatomical workflow
patterns/ mental maps (Figure 13) for first-trimester scanning.
This figure illustrates the three most common patterns of
scanning (workflows) among US operators, with ’A’ being the
most commonly practiced workflow followed by ’B’ and ’C’.

C. Clinical Workflow Variability Analysis

1) Intra-Operator Variability for First Trimester: In the pre-
vious section (Section. V-B) we showed that sonographers
scan in different patterns. In this section we analyze operator
scanning variability in more detail using anatomical timeline
models to assess the variance in task type, order, and time dis-
tributions. The ’task type variability’ is defined as the standard
deviation of the number of unique tasks reported. The ’task
order variability’ is a measure of variability in the acquisition

Fig. 13. The most probable general anatomical workflow patterns for
1st-trimester scanning. (A) The anatomical workflow with the highest
probability of starting with CRL (Markov chain probability: 61.01%),
(B) The second most probabilistic anatomical workflow starting with the
fetal brain scan (Markov chain probability: 26.96%). (C) The third most
probabilistic anatomical workflow (Markov chain probability: 24.15%).

of anatomical structures, as it is calculated using the standard
deviation of the Apriori-based anatomical tasks workflow. The
deviation from the mean relative duration of anatomical tasks
acquisition is referred to as ’task-time distribution variability’
in the first trimester. These variability metrics are reported in
the range [0,1] as a normalised deviation from the respective
means. Figure 14 reports first trimester US intra-operator
variability metrics. These results show the type, order and
time distribution variability of each operator. During the
first-trimester US scans, variability among sonographers for
type is 23.6%, order is 20.6%, time distribution is 22.2% and
overall mean intra-operator variability is 22.13%. Task type
and time distribution variability are highest for operators O1
and O3, which may relate to less-developed skills. Specifically,
O3 is a newly-qualified operator. It is observed that the average
intra-operator variability of the NQ operators is higher than the
EX operators.

2) Comparison With Second Trimester: To compare our
results with second-trimester operator variance (Figure 14),
we chose the same operators as in [37]. Operator 6 did
not participate in the second-trimester scanning operations.
Therefore, data from that individual cannot be compared in
the analysis. The first and second-trimester ultrasound scans
differ in length, anatomical classes, and the ultrasound appear-
ance of the same anatomy. For instance, on average, a full-
length second-trimester routine US examination usually takes
56.69%; longer than a first-trimester scan. Sharma et al. [37]
reported a total of 13 different anatomical classes during the
analysis of second-trimester US scans, whereas we reported
seven different anatomical structures for the first-trimester US
scans.

There was a significant difference in scanning time between
NQ and EX groups. As we observed for both trimesters,
NQ operators take longer to scan compared to EX operators.
The NQ group took 19.88% more time for a full-length
second-trimester scan than for a first-trimester scan on average.
This could be due to a higher number of anatomical structures
being assessed during second-trimester scanning.

Taipale et al. [6] reported a significant ‘learning curve’
associated with first-trimester anomaly screening. Accord-
ing to Karim et al. [4] greater US scanning sensitivity of
fetal anatomy scan could be achieved with the use of a
detailed anatomical protocol. Currently, first trimester US
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Fig. 14. Intra-operator variability for first and second trimester scanning for 5 operators. a. Task Order Variance, b. Task Time Variance, c. Task
Type Variance.

scans lack standardised protocols for anatomical screening,
and this may cause the higher variability score between first
and second trimester US scans. It may also explain the
higher intra-operator variability (46.76%) observed during first
trimester scans as compared to second trimester scans.

DISCUSSION AND CONCLUSION

In this study we have investigated clinical workflow dur-
ing first trimester scanning by large scale data analysis of
full-length first trimester US video scans. This work is the
first attempt to model clinical workflow on real-world first
trimester ultrasound video acquired in a routine fetal screening
clinic.

The pre-requisite for such analysis is the semantic temporal
partitioning of full-length US scans based on the presence
of different anatomies. To this end, we developed a machine
learning (ML)-based model (PULSE-v) to automatically par-
tition first trimester full-length video scans, which is subse-
quently used for operator clinical workflow analysis. PULSE-v
is a spatio-temporal CNN architecture transfer-learned to
annotate full-length first-trimester US videos. We showed
that knowledge transfer from the second-trimester scan to
the first-trimester scan improves annotation accuracy. Test set
results of automatically versus manually labelled data shows
an accuracy of 96.10% and a correlation of 0.95 (p < 0.06).
PULSE-v was used as the input to an approach to automated
clinical workflow analysis.

We presented subject-specific anatomical timeline models
(ATM) that provide a shorthand representation of clinical
workflow task duration for a first-trimester US scan and makes
observations on large-scale datasets easier and insightful. Our
analysis showed that only 50.32% of operators look at the
abdomen, heart and 3D-mode (these are optional in guide-
lines). Similarly, 44% operators did not utilise the 3D/4D US
transducer.

Operator workflow analysis (OWA) was used as a quanti-
tative methodology to model and visualise typical patterns of
workflow at the individual and group (experienced operator,

newly qualified) levels. This showed that EX operators look
less into anatomies like Ab, Hr and 3D-mode (which are
optional). Some operators (such as O2 and O5) spend less
scanning time looking into these three anatomical struc-
tures, 11.42% and 25% respectively. On the other hand,
NQ operators scan the fetus for longer times, and the majority
of NQ operators (95.23%) scanned the Ab standard plane.
We observed that detailed imaging of the Heart is the least
observed during the first-trimester scan, and this has impli-
cations for the detection of such anomalies [5]. Finally, our
analysis shows that, on average, NQ operators take 20.24%
more time than EX operators to perform a full-length US
scan. Most of this time is spent localising the CRL and NT
structures. NQ spend 25.56% more time than EX operators on
the CRL and NT biometry task.

This study revealed that the time, order, and task variances
of the first trimester US scan depend not only on operator
experience but also their priorities, and preferences (style)
plays a role acquiring US scan. According to Karim et al. [4]
the use of standardized anatomical protocol could improve
the operator sensitivity for first-trimester US screening. This
study provides supporting evidence of this, and tools that
could be used to assess future first-trimester clinical workflow
standardization protocols.

This study has been limited by the fact that the real-world
dataset available for this study is not balanced by anatomy
class. The accuracy of clinical workflow analysis could be
improved by increasing the number of scans with balanced
anatomy acquisitions. However, it should be recognised that
we are modeling real-world scans, that are by their nature
imbalanced. There is also the possibility that bias in final
workflow patterns may result from data acquired from the
same institution and using the same imaging device. However,
in our case the data is collected following the FASP proto-
col [1], [2], which is followed by sonographers in the UK
NHS. Other international protocols such as the ISUOG [54]
guidelines are similar. Thus the scanning protocol would be
representative of a typical site.
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This study has opened up a number of directions for future
possible studies. In the current study, sonographer clinical
workflow focused on CRL and NT tasks which are the
two primary structures assessed during a first trimester scan.
We observed that few operators looked at other anatomical
features such as the heart, abdomen, and limbs. It would
be interesting to acquire US scans covering a wider range of
anatomy and use the methodology reported in this paper to
assist in understanding the standardization of first trimester
US scans. A second direction of study might utilize the
current knowledge obtained from this study to provide the
justification for, and subsequent evaluation of assistive tools
for first terimester US scanning. For example, it is observed
that NQ operators have difficulty localizing complex standard
planes (NT). This suggests the need for further research into
assistive tools for the navigation and localization of fetal
anatomical structures during the first trimester US scan.
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